K因素(K-factor )
K因素用于衡量病毒式增长的效果。
如果K因素等于1,那意味着你能通过每一名现有玩家获取一名新玩家,你的游戏既未增长也没有衰减。如果K因素小于1,那么你必须加大营销力度,否则游戏玩家将有可能流失殆尽;而若K因素大于1,则意味着你的游戏增长迅速。绝大多数游戏的K因素都小于1,换言之,绝大多数游戏都不可能迅速增长。
从病毒传播的角度来说,K因素衡量单个被感染玩家所引发的“感染病例”。举个例子,如果某款游戏的K因素为0.5,就意味着每一个“被感染的玩家”将感染0.5个其他玩家——促使后者下载你的游戏。不过,这种衡量方法并不完全准确,因为很多因素可能引发病毒式传播,其过程充满未知和不可预见性。
平均每用户获取成本(CPA)和有效用户获取成本( eCPA)
CPA即平均每用户获取成本。CPA很容易理解,假设你在Chartboost渠道花了5000美金,获得2500个新玩家,那么你的CPA就是5000/2500=2美元。
有很多因素可能影响移动游戏的总体用户获取成本,例如地域、平台、游戏类型、下载包大小等各种参数。一款游戏是免费抑或付费下载,以及用户的质量高低,都将影响用户获取成本。你也许不得不为游戏的每一次下载付出0.5-2.5美元,以获取优质用户,和/或大量用户。通常来说,这就是你获取用户的一个基本计划,而预期用户量大,出价就越高。
InMobi或AdMob等广告网络的服务费用可能更高,常介于单次安装5-10美元之间。通常只有大游戏公司才使用这些网络,它们对独立游戏开发者来说并不划算。很多开发者选择Chartboost,因为后者能够让游戏触及高质量玩家,且成本可以接受。
eCPA则是指有效用户获取成本,即获取每一名玩家,再加上该玩家所吸引而来的下载量的总成本。某种程度上,eCPA亦可被用于衡量你的网络所具备的病毒式传播潜力。eCPA总是小于CPA,因为它有附加效果,但其最大的缺点是,eCPA非常难以统计。举个例子,你如何判断一次连锁效应是否源起于你的某次购买行为呢?
但为了简便起见,开发者倾向于统计在特定时间段内的投资总额,及游戏的总下载量。假设在1个月内,开发者投入2000美元为某游戏购买了1000次下载,而该游戏当月总下载量为5000次,那么其CPA为2000/1000 = 2美元,而eCPA则是2000/5000 = 0.4美元。
使用及留存相关指标
留存率被用于统计在一段时间内,活跃玩家的留存比率。
举个例子,得益于某次营销行为,你的某款游戏成功获取了4000名玩家。至第5日,如果该游戏活跃玩家人数当天达到2000,那么其留存率即50%;如果次日(第6日)现有玩家减少了10%,降至1800人,那么第6天游戏留存率就是45%,以此类推。
一般来说,开发者会统计游戏上线首日、第7天和第30天的留存率——在这3次统计项中,40%、20%和10%的留存率数据就很不错。不过,游戏留存率也受到游戏类型的影响,策略游戏的30日留存率通常高于休闲游戏。